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1.  Introduction

The mechanical structure of the human hand is very complex, 
with numerous mechanical effectors, a variety of sensory 
structures, and a bidirectional interface with the brain. It has 
27 degrees of freedom [1] for use in complex grasping tasks, 
along with a sensory feedback system capable of picking up 
nociceptive, thermal and tactile information, among other 
modalities [2]. In the intact human hand, movements are pro­
duced by more than 30 muscles positioned within the forearm 
(extrinsic muscles) or hand (intrinsic muscles). Gripping and 
gross extension or flexion movements of the whole hand are 
mediated by extrinsic muscles, mostly innervated by the radial 
and median nerves. For precise movement and fine movement 
control of the individual fingers, intrinsic muscles are largely 

responsible, innervated by terminal branches of the median 
and ulnar nerves [3].

Loss of an upper extremity can cause devastating 
impairment for an amputee and can significantly reduce 
the quality of life. Numerous daily living activities are 
either no longer possible or require extra time and effort. 
To tackle this type of severe disability issue, upper limb 
prosthetic technology has been significantly improved 
over the last few decades, as a result of technologically 
improved surgical procedures and scientific advances that 
have demonstrated the feasibility of neurally controlled 
prosthetic arms and hands, and interfaces that communi­
cate between a prosthesis and an amputee. Prostheses are 
becoming ever more sophisticated, with the goals both of 
improved esthetics (that is, resembling the lost limb as 
closely as possible) and of feedback and control mech­
anisms that meet the needs of an amputee.
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Neural control of a prosthetic arm or hand can in principle 
be achieved by recording electrical activity from the remaining 
part of the arm of an amputee. This electrical activity encodes 
motor command signals that originate in the primary motor 
cortex (M1) of the brain. These signals are then processed in 
the spinal cord and travel through the motor nerves to activate 
specific muscles. In many amputees, even though the muscles 
are no longer available, the motor signals still exist. Thus, if a 
missing hand, for example, is replaced by an artificial one, the 
same motor signals can in principle be decoded to control the 
prosthesis. It should be possible, therefore, to control a pros­
thetic arm or hand using a sophisticated brain–machine inter­
face for translation between the amputee’s neural command 
signals and the electric signals that control the prosthesis [4]. 
These brain signals travel through several modulating and 
processing units before reaching the target (the residual limb) 
and can in principle be monitored anywhere along the way. If 
they are acquired from peripheral nerves of the residual limb, 
the result is a nerve-signal-controlled interface.

A typical nerve-signal-controlled interface performs three 
basic processes: recording of physiological signals, decoding 
of motor signals, and translating peripheral nerve signals into 
correctly formatted commands to the prosthesis [5, 6]. In the 
first stage, signals are acquired from the peripheral nerve via 
a nerve interface [7]. These acquired voltage signals are typi­
cally a thousand times smaller than the voltage signals that 
travel along nerves, and are contaminated with noise gener­
ated by muscle contraction, transient effects from the move­
ment of the body, and other sources, and therefore need to 
be denoised. After denoising, certain features of the signals 
are extracted to make the resulting data computationally 
more manageable. These features are then sent to a classifier, 
decoded into motor signals and used to drive the prosthetic 
limb. A block diagram illustrating the pathway from nerve 
interface to prosthesis actuation is shown in figure 1.

It depicts an interface linking activity in the median, ulnar, 
or radial nerve from the residual limb of a patient to move­
ment of a prosthetic device.

Over the last two decades, research has been carried out 
on a variety of interfaces [8], translation algorithms [9, 10], 
and prosthetic limbs with near-to-natural operation and aes­
thetics. Motor signals from peripheral nerves can be acquired 
using various types of interfaces that are either placed inside 
the nerve fascicles (intra-neurally) or around the periphery of 
a nerve (extra-neurally). Intra-neural interfaces are usually 
used to record action potentials (spikes), while extra-neural 
interfaces are used to record population activity signals. For 
decoding movement intent, raw motor signals or action poten­
tials directly from the peripheral nervous system (PNS) are 
rarely used. Several signal conditioning steps are usually 
required to formulate appropriate commands. First, the motor 
signals are filtered to remove noise, and their complexity is 
reduced using dimensionality-reduction algorithms. The next 
step in a typical intra-neural interface is to extract and sort dif­
ferent types of spikes according to their shapes, amplitudes, 
and firing rates. The extracted signals are then classified using 
classification algorithms. A similar procedure is used for 
extra-neural interfaces, except that the features are extracted 

from population activity signals rather than individual action 
potentials. The decoded output signals from these interfaces 
are then forwarded to drive the prosthesis.

The purpose of this paper is to review state-of-the-art tech­
niques for acquiring motor signals from peripheral nerves, 
and the algorithms that are used to decode this high volume, 
non-linear data for formulation of commands that can be used 
to drive a prosthetic limb. Figure 2 presents the methods dis­
cussed in this paper. Recording interfaces for cortex, muscle 
and nerve are discussed in section 4, with the focus on periph­
eral nerve interfaces. Studies of state-of-the-art peripheral 
nerve interfaces usable in humans are discussed in section 5, 
along with their limitations. Peripheral nerve signal decoding 
algorithms and performance evaluation methods are discussed 
in sections 6 and 7, respectively. Section 9 explores possible 
and desirable future developments in the technology of nerve 
interfaces and decoding schemes.

2.  Motor system physiology

The human nervous system consists of the CNS (central ner­
vous system); made up of the brain and the spinal cord, and 
the PNS, made up of peripheral nerves and a variety of other 
components such as the autonomic nervous system. This 
review is focused mainly on interfaces and decoding schemes 
related to the peripheral nerves, hence in this section we nar­
row our scope to the PNS and motor signals only.

Each peripheral nerve contains a group of fascicles—small 
bundles of nerve fibers. The nerves are organized somatotopi­
cally and functionally at the fascicular level [11]. Different fas­
cicles within a nerve eventually branch off to distinct targets. 
Fascicular groups destined for nearby targets remain clustered 
within the nerves over long distances, thus facilitating selec­
tive interfacing with specific fascicles within a given nerve. 
For example, the nerves innervating a muscle in the upper arm 
have their cell bodies in a vertically oriented column inside 
the spinal cord, and their axons leave the spinal cord through 
the ventral roots, sometimes from multiple segments. These 
axon fibers then regroup distally, until all axons innervating 
a specific muscle are grouped together in one fascicle of the 
nerve. The fascicles may contain axons arising from motor, 
sensory and autonomic neurons. Of these, two types of axons 
are important for controlling prosthetic limbs: efferent (motor) 
and afferent (sensory) fibers. The motor nerves carry efferent 
signals from the brain via the spinal cord to the designated 
muscle to drive movement. In the other direction, the sensory 
nerves carry afferent signals from the skin back to the brain, 
via the spinal cord, dorsal root ganglia and brainstem; in this 
way tactile stimuli picked up by the skin can influence brain 
activity [12, 13]. Golgi tendon organs and muscle spindles are 
responsible for sending proprioceptive feedback (joint motion 
and position). Autonomic nerves control involuntary and 
semi-voluntary functions such as heart rate, blood pressure, 
digestion, and sweating.

Voluntary movements are planned and executed by the 
central nervous system. For determining motor intent, neu­
rons (and their axons) are the main sources of meaningful 
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signals, with other cells such as glia providing little or no use­
ful information. When a person intends to move a body part, 
an electrochemical reaction takes place in the motor cortex 
of the brain. As a result of this reaction, neurons fire action 
potentials, which are approximately 150 mV changes in the 
electrical potential within the neural cell relative to the out­
side, and which last for approximately 1 ms [14]. Each motor 
neuron has an axon, a thin fiber that projects from the cell 
body, which can propagate action potentials to other neurons 
or to distal muscles and organs. Action potentials affect other 
cells, including muscle cells, via synaptic connections. In this 
manner, signals (motor commands) travel through the CNS 
to reach the proximal ends of peripheral nerves that are con­
nected to target muscles. As a result, the muscles execute con­
tractions. Interfaces placed either inside or around the nerves 
can record voltage signals representing the neuronal activity 
in the surrounding axons. Thus, nerve signals can be recorded 
via various types of interfaces and then decoded for determi­
nation of a person’s intent.

3.  Natural versus prosthetic

The human hand is a vital and complex body part, perform­
ing a wide range of functions, from opening doors to operat­
ing complex machinery. It allows precise control of the grip 
patterns required for various tasks and the amount of force 
required to perform them [3]. Losing a hand can have dev­
astating effects on a person’s life, in many cases making the 

amputee dependent on others for even the most basic tasks such 
as eating. Over the last few decades, a great deal of research 
has been carried out to create prosthetic hands that look and 
perform like natural hands. There have been many advances 
in the mechanical structure, number of degrees of freedom, 
smoothness, and stability of prostheses such as the BeBionic® 
and Ottobock®. Even so, a large gap remains between natural 
and prosthetic hands in terms of control and feedback. Farina 
and Aszmann [15] noted the following major requirements for 
better performance: (i) Better peripheral nerve data-recording 
interfaces and decoding of user intention; (ii) Development of 
algorithms that do not require the individual to concentrate on 
trying to move the prosthesis. (An intact person requires no 
concentration; rather, hand movement is accomplished sub­
consciously, which frees the brain to take other actions.) (iii) 
Provision of crucial sensory inputs to the brain. (The natu­
ral hand can feel sensations including pressure, temperature, 
and texture.) (iv) Closing of the loop by providing feedback. 
(Pressure sensation helps the subject generate the correct 
amount of force to grasp each specific object.)

The use of signals from peripheral nerves can address 
some of these needs to a degree, and is thus categorized as 
an alternative method for signal acquisition, as a substitute 
for the use of cortical or muscular signals [16]. To be sure, it 
is impossible to acquire useful PNS signals from tetraplegic 
patients, who require other types of solutions. However, in 
cases of trans-humeral or trans-radial amputation, PNS sig­
nals can be attained from the residual limb and used to control 

Figure 1.  General framework for a prosthetic interface.

Figure 2.  Breakdown of methods for recording and decoding peripheral nerve signals.
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prostheses. An additional consideration is that, as alluded 
to above, amputees may be psychologically disturbed after 
going through traumatic event: therefore, asking brain surgery 
for the purpose of recording motor signals to drive prostheses 
seems inappropriate. In such cases, acquiring signals from the 
PNS may be a more suitable option, and may also be less pain­
ful for the patient. This can be viewed as one of the advantages 
of PNS signals. The pros and cons of PNS signals with respect 
to different types of interfaces are discussed further in the next 
section.

4.  Acquisition techniques

Since our focus is on PNS signals, only a brief description 
of the techniques employed for detecting usable motor com­
mands from the brain is presented. In-depth descriptions 
are reserved for interfaces and techniques for PNS signal 
acquisition.

One potential source of information for acquisition of 
motor signals is the brain itself. The brain is an especially 
useful source in cases where the patient suffers from high 
spinal cord paralysis, locked-in syndrome, or severe commu­
nication disorders. In these situations, signals from muscles 
and proximal nerve endings are unavailable because no sig­
nals reach these points [17]. Signals originating in the motor 
cortex of the brain can be acquired either non-invasively or 
invasively. Several cortical interfaces have been designed and 
tested for detection of these motor commands. Noninvasive 
techniques can detect specific signals of brain activity and 
interpret them to generate control signals. Various modalities 
can be used for recording, including electric potentials (via 
electroencephalography) [18–22], neuromagnetic signals (via 
magnetoencephalography) [23] and concentration changes 
in oxy- and deoxy-hemoglobin (via functional near-infrared 
spectroscopy) [24–32]. These signals are preprocessed for 
removal of physiological noise and passed to pattern-recog­
nition algorithms to decipher the user’s intent [33–35]. The 
existing noninvasive techniques are unidirectional: it is possi­
ble to acquire signals from the brain to using them for prosthe­
sis, but it is much more difficult to send usable feedback to the 
CNS. Cortical signals can also be obtained by invasively plac­
ing interfaces directly into the cortex via surgery (see further 
details in [36]). These interfaces can detect more natural and 
less noisy signals, either in the form of spikes or of population 
activity signals. Having higher peak values and a better signal-
to-noise ratio (SNR), cortical signals have been successfully 
used to decode user movement intent; however, many users 
may be reluctant to adopt this approach due to the requirement 
of brain surgery.

For this reason, many research groups have begun working 
on alternative techniques for attaining motor control signals. 
Peripheral nerve signals are qualitatively very different from 
cortical signals but are nevertheless useful for decoding user 
intentions. In the following section, we discuss the state of the 
art in PNS signal decoding.

4.1.  Signal acquisition techniques for peripheral nerves

Myoelectric, body-powered, and hybrid type prostheses are 
widely used for individuals with upper limb loss [17]. Surface 
electromyogram (EMG) signals from residual limb muscle 
sites are used to control motors in myoelectric prostheses. 
They are usually controlled by recording weak and strong 
contractions of either one muscle or two independent mus­
cles. In body-powered prostheses, large mechanical structures 
are involved. To generate the necessary force, amputees can 
apply their remaining shoulder movements via a harness and 
cable that is connected to the terminal device, elbow, or wrist. 
Users of this type of prosthesis can switch functions (locking 
and unlocking of the joints) by pressing a toggle switch or 
by pulling a locking cable. Because these types of prosthe­
ses do not require surgery, they are acceptable to most users 
even though the control is not very intuitive [37]. In general, 
reduced prosthesis weight is the highest priority design con­
cern of users, with sensory feedback and better dexterity fol­
lowing in importance.

Another emerging type of prosthesis, making use of periph­
eral nerve interfaces, has gained increasing attention over the 
last 20 years. The basic principle lies in recording motor sig­
nals from peripheral nerves and sending back sensory infor­
mation through electrical stimulation. When cortical signals 
reach the proximal end of the nerve (after processing at several 
way-stations, notably the spinal cord) and are recorded, they 
are called electroneurographic signals (ENG). These signals 
can be intercepted by placing interfaces either on the nerve 
(extra-neurally) or within the nerve (intra-neurally).

4.1.1.  Extra-neural interfaces.  The range of peripheral nerve 
interfaces can be split into two broad categories, extra-neural 
and intra-neural. An extra-neural interface surrounds a periph­
eral nerve. These interfaces do not breach the protective sheath 
of the nerve, thus are less invasive than intra-neural interfaces. 
The initial designs of this type were helical and spiral [38, 39]. 
A simpler form is a cuff-type interface that contains multiple 
distinct electrodes for recording of population activity around 
the periphery of the nerve. However, the circular shape has 
the shortcoming of minimal interaction with specific neurons 
or axons, hence low selectivity. Since the interface and nerve 
are separated by a protective sheath, recording of individual 
nerve fibers is not possible [8]. Multiple cuff interfaces can be 
placed on different nerve branches close to the end organ to 
achieve better selectivity, but at the cost of increased implant­
ation risks.

Recording neural activity with nerve cuff electrodes pro­
vides several advantages in terms of safety, non-invasiveness, 
and selectivity, as compared with intra-neural interfaces. An 
upgraded version of this type of interface was introduced in 
2002 by Tyler and Durand [40], named the flat interface nerve 
electrode (FINE). This was developed to increase the con­
tact area of the interface with the nerve without penetrating 
it. The FINE gently flattens the nerve to make the inner fas­
cicles more accessible. However, the individual efferent and 
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afferent fibers remain inaccessible [17]. The amplitude of the 
action potentials detected by extra-neural interfaces is much 
lower than in the case of intra-neural interfaces and depends 
on the distance of the electrodes from the active axons [12]. 
Extra-neural interfaces have been widely applied in acute 
studies of motor behavior, for recording and stimulation of 
peripheral nerves of cats [38, 39, 41, 42], rabbits [9, 43, 44], 
dogs [45, 46], rodents [47], human models [48], and human 
subjects [49–54]. Previous work [55] on the development and 
implementation of FINE has achieved many breakthroughs, 
including (i) a high degree of selectivity, as estimated by indi­
vidual fascicle recording; (ii) use of blind source algorithms 
to decode motor commands; and (iii) (by employing arrays of 
interfaces along the peripheral nerve) excitation of fibers hav­
ing small diameters before large fibers, thereby reversing the 
usual recruitment order. FINE and spiral cuff interfaces have 
been implanted in humans with limb loss for periods as long 
as 4 years, maintaining stability and selectivity [51, 52].

4.1.2.  Intra-neural interfaces.  Intra-neural or intra-fascicular 
interfaces are physically inert electrical contacts placed inside 
nerve fascicles, so that they come into direct contact with 
axons. Both efferent and afferent axons can be reached, so 
recording of motor commands is not difficult. Higher record­
ing selectivity and better SNR can be achieved than with cuff 
electrodes [8, 47, 56]. The first intra-neural interface, devel­
oped in 1989, was a single-channel Pt-Ir wire designed for 
small nerve fascicles [57]. It was inserted into a fascicle to 
obtain a neural signal with high SNR and greater selectiv­
ity. With technological advances, micro-machined interfaces 
are now available with more channels and contacts. Among 
the available intra-neural interfaces, the longitudinal intra-
fascicular electrode (LIFE) [58], a conducting wire implanted 
longitudinally parallel to a nerve fascicle, is potentially very 
interesting due to its selectivity and relatively low level of tis­
sue damage. After testing of biocompatibility and efficacy in 
experimental models, the LIFE has been implanted in humans 
for decoding and stimulation [59–61]. Successful recordings 
of voluntary motor commands were achieved, along with 
evoked sensations of touch, joint movement, and position. The 
human subjects were able to control a prosthetic arm, and to 
improve their performance with experience and training.

A variant of the LIFE is the thin-film longitudinal intra-
fascicular electrode (tfLIFE), a micro-machined bio-compat­
ible electrode designed to be more flexible and to allow use 
of more active electrode channels and sites than the original 
LIFE. The tfLIFE has been tested in the sciatic nerve of rats 
for periods of up to 3 months [62]. The possibility of decoding 
motor commands suitable for dexterous control of a hand pros­
thesis was investigated using the tfLIFE, showing that motor 
information, grip types, and single finger movements could be 
extracted with a classification accuracy above 80% [63, 64]. 
Moreover, a bidirectionally controllable prosthesis was suc­
cessfully achieved [65] in a person with an amputation.

Another type of penetrating interface is the transverse intra-
fascicular multi-channel electrode (TIME) [66], which has 
aligned contacts inserted perpendicularly to the nerve. These 
interfaces have a larger number of channels (up to 16), higher 

selectivity [67], and better biocompatibility [68, 69]. An acute 
stimulation and recording study in pigs using both TIME and 
tfLIFE found that TIME interfaces were able to recruit more 
muscles with higher selectivity than tfLIFE interfaces [70]. 
In that study, sequences of electric stimuli were applied to 
individual contacts. Several pioneering studies using LIFE 
interfaces have demonstrated the possibility of recording and 
stimulation of peripheral nerves in various animals and mod­
els [71–78]. A real-time bidirectional hand prosthesis control 
using TIME has also recently been demonstrated [79].

Another family of penetrating intra-fascicular interfaces 
are known as microelectrode arrays (MEA) [80–82] or mul­
tiunit arrays (MUA) [83, 84]. Among these devices, the most 
popular is the Utah slanted electrode array (USEA) [85–88], 
which consists of 100 needle-shaped electrodes arranged in 
a 10  ×  10 matrix. This type has varying electrode densities, 
matching several designs proposed in the literature, with 
multiple penetration depths. Each needle is less than 80 µm 
in diameter, and the needles vary in length from 0.5 mm to 
1.5 mm [89]. Flexible penetrating microelectrode array inter­
faces [90] have also been developed recently, to demonstrate 
their viability for extracting sensorimotor information from 
the peripheral nerves. These interfaces have great benefits for 
individuals who have suffered a limb loss, but an increased 
risk of nerve damage because they are inserted perpend­
icularly to the nerve. Thus, the USEA offers higher selectiv­
ity than LIFE, tfLIFE or TIME but is more invasive. Due to 
their proximity to the axons, MEAs are capable of isolating 
individual action potentials; therefore, a small group of axons 
can be selectively recorded. One of their disadvantages, how­
ever, is a tendency to damage the nerve, which reduces long-
term stability.

4.1.3.  Regenerative interfaces.  Regenerative interfaces gen­
erally comprise a sieve or array of micro-channels [91]. After 
the device is inserted into a transected nerve, axons can grow 
through the holes and make functional connections with elec­
trical contact sites. Differences in the growth rates of axons 
through the holes can permit selective stimulation and make 
it possible to record action potentials from individual axons 
or a small group of axons. Ideally, each axon should pass 
through a hole individually, resulting in very high selectiv­
ity for recording or stimulation. By reducing the size of the 
sieve, with a corresponding increase in the number of fine 
holes [92], a greater number of selective recording sites can 
be obtained. This is the most invasive of all the interfaces 
that have been discussed but has the highest selectivity. The 
most exciting application of these interfaces will be implant­
ation in the severed nerves of an amputated limb for bidirec­
tional control of a prosthesis [6]. These interfaces can only 
be applied to transected peripheral nerves and require time 
for regenerating axons to grow through the holes, and thus 
do not allow acute experiments [93]. This can be considered 
a drawback, in that useful motor control can only be achieved 
after several months. Although promising results on the use 
of regenerative interfaces have been achieved in experimental 
models [94, 95], challenges remain that currently limit their 
clinical usability.
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4.2.  Signal acquisition from muscles

The peripheral nerves culminate in the muscles, where the 
neural signal is, in a sense, transformed and amplified to cre­
ate the EMG signal. This signal can be detected by placing a 
type of interface known as an implantable myoelectric sensor 
(IMES) [96], either invasively into the muscle or non-inva­
sively on the skin surface. The prescribed method of acquisi­
tion and decoding of the EMG signals to control a prosthesis 
includes the following steps: (i) signal conditioning; (ii) pre­
processing; (iii) extraction of features; (iv) dimensionality 
reduction; (v) pattern recognition; (vi) learning (offline and 
online) [97]. Surface and intramuscular EMG electrodes are 
discussed further in the following section.

4.2.1.  Surface EMG electrodes.  The focus of this review is 
on peripheral nerve interfaces, but a brief account of EMG-
based decoding and interfaces is useful for comparative 
purposes. The EMG is a significant source of information, 
potentially allowing an amputee to control a prosthesis with­
out requiring implantation of an interface within a nerve or 
muscle. The signals can be acquired using non-invasive sur­
face electrodes positioned over the muscles. The most primi­
tive example of such an interface is an on-off control: when a 
certain EMG signal exceeds a specified threshold, a specific 
prosthesis function is activated [98]. It is easier to acquire sig­
nals in this way than by using peripheral nerve interfaces. In 
the past, several designs have been proposed, including high-
density surface EMG [99] and multi-channel surface EMG 
[100]. Several experiments have been conducted to validate 
these approaches to prosthesis control, both in virtual and real 
environments [101]. However, EMG signals can be recorded 
only if a substantial volume of muscle is available at the 
amputation site. Even then, it is generally not possible to use 
homologous muscles to control the prosthetic device; this lim­
itation makes the interface feel unnatural. This in turn requires 
a great amount of mental effort and concentration from the 
user to control the prosthesis. Moreover, the recorded signals 
do not reflect the contributions of deeper muscles, are affected 
by displacement of the muscles during contraction, and suffer 
from cross-talk between muscles. For these reasons, several 
researchers have begun working on invasive EMG and periph­
eral nerve interfaces.

4.2.2.  Invasive EMG.  Research on invasive EMG interfaces 
is motivated by the varying and inconsistent motor signals 
from surface EMG electrodes, which lead to high rates of 
prosthesis rejection by users. Surface electrodes are impacted 
by phantom limb sweating, meager contact with the skin, and 
their ability to record signals only from superficial muscles, 
whose function often does not relate to the intended prosthetic 
application [102]. To overcome these issues, along with the 
problems of muscular crosstalk and displacement, intramus­
cular EMG recording has been proposed as an alternative to 
surface EMG. Implantable myoelectric sensors (IMES) are 
small electrodes designed to sense and transmit EMG signals 
wirelessly to a prosthesis. They were designed for simulta­
neous recording of signals from multiple amputated limb 

muscles, with the goal of allowing natural-feeling control with 
several degrees of freedom. Recently, IMES electrodes have 
been successfully implanted in an amputee to control a pros­
thetic hand in a stable and intuitive way. Furthermore, single 
channel [103] and multi-channel intramuscular [75] thin-film 
electrodes have been designed and tested in vivo in humans 
for detection of muscle signals [104]. These electrodes have 
been extensively tested in deep and superficial muscles. The 
accuracy of control of a prosthesis was significantly improved 
using IMES. The results of earlier studies showed that record­
ing of the voluntary activity of individual muscles and trans­
mission of this information wirelessly can be used to control a 
prosthetic device with three degrees of freedom, namely, wrist 
supination/pronation, finger extension/flexion, and thumb 
abduction/adduction. However, if the target muscle sites are 
located very close together or are very small, then IMES are 
not useful for detection and decoding of control commands.

5.  State of the art in PNS decoding

Peripheral nerve interfaces are critical components required 
for bidirectional control of a prosthesis from the residual arm 
of an amputee. Their effective development requires care­
ful consideration of neural anatomy, molecular biology, and 
physiology. Successful development and clinical utilization of 
extra- and intra-neural interfaces has significant benefits on 
those who have lost limbs. As the technology improves and 
understanding of the relevant physiology increases, selective 
interfacing at the neuronal level has drawn increasing atten­
tion as a means of allowing an amputee to dexterously control 
multiple degrees of freedom. However, additional studies are 
still needed of the long-term use of peripheral nerve interfaces. 
For complete success, the biocompatibility of interfaces must 
be upgraded to the level needed for long lasting and stable 
communication.

As alluded to above, if volitional motor commands to the 
hand can be detected, they can be used to control a prosthe­
sis [105]. The control of an electroneurographic (ENG)-based 
prosthesis is based on a fundamental principle: movement 
related activity may remain present in the motor cortex of the 
brain [106] and the peripheral nerves of an amputee.

5.1.  Human PNS decoding

Several recent experimental studies have demonstrated the 
viability of restoring sensory feedback and intuitive control 
of multiple degrees of freedom in upper limb amputees using 
prosthetic devices driven by PNS signals.

In the first human study, eight amputees were enrolled for 
implantation of intra-neural interfaces (LIFE) percutaneously 
in severed peripheral nerves for two days, to record volitional 
motor commands and to provide sensory information (touch 
and proprioception) by electrical stimulation with varying 
current intensity [59]. In follow-up work, the same research­
ers demonstrated for the first time the bidirectional control of 
a prosthesis in the absence of visual feedback [60]. The ampu­
tees could set a gripping force, and joint position feedback 
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was given to them using electrical stimulation. The amputees 
performed well due to continuous short-term training after 
the implant surgery, resulting in improved volitional control 
of prosthesis activity. The sensory stimulation parameters 
remained stable over time and provided discrete or graded 
sensations of touch or pressure encoding joint-position infor­
mation [107].

Another important study, showing the possibility of obtain­
ing motor signals from the median nerve of the left arm 
(though not in an amputee), was published in 2005 [108]. 
MEAs were implanted in a healthy volunteer for the period 
of approximately three months. This pilot study demonstrated 
the compatibility, efficiency and long-term operability of the 
implanted interface, with simultaneous real-time control of 
a hand prosthesis and electrical stimulation of the peripheral 
nerve as feedback. No discernable loss of motion control or 
hand sensation was experienced by the subject, and no signs 
of infection were found when the implant was removed.

In 2007, a study of the feasibility of detecting motor con­
trol signals from long-term amputees was conducted using 
three intra-neural interfaces, implanted in the median, ulnar 
and radial nerves [109]. The amputees were able to generate 
volitional motor nerve potentials that related to the movement 
of the residual limb. Finger extension/flexion, wrist extension/
flexion, and forearm supination/pronation signals were suc­
cessfully decoded and used to drive the prosthesis.

In 2011, intra-neural interfaces (tfLIFEs) were implanted 
in the median and ulnar nerves of an amputee to record motor 
commands that were usable for controlling a prosthesis [64]. 
Several algorithms were used to decode the commands (single 
finger movement and grip types) for dexterous control of the 
prosthesis with 85% accuracy. Extending this work in another 
study, the same researchers were able, by implanting flex­
ible intra-neural interfaces (tfLIFE4) in a peripheral nerve, to 
achieve real-time control of three hand movements using dis­
tinct motor commands [65]. Although the stimulation thresh­
olds for sensory feedback were not stable 10 d after surgery, 
control of multiple movements of the prosthesis was success­
fully achieved.

In 2014, a newly designed intra-neural interface (TIME) 
was implanted in a peripheral nerve of an individual having 
an upper extremity amputation [79]. This interface was able 
to provide stable, bidirectional, and nearly natural control of a 
prosthetic device together with tactile feedback over the study 
period of one month. Sensory information from the sensor-
equipped hand was transferred to the individual using electri­
cal stimulation. This real-time interface was able to control 
various grasping movements without requiring audio or visual 
feedback. Furthermore, three different levels of the force were 
distinguished using a surface EMG interface, and consistently 
used by the subject.

In a parallel study in 2014, a new mechanism of commu­
nicating with prosthetic devices was proposed by a research 
group. They provided a long-lasting, stable, reliable, and bidi­
rectional interface between a prosthesis and an individual with 
a trans-humeral amputation [54]. Several epimysial EMG 
electrodes were implanted in subjects to record motor com­
mands, and cuff-type interfaces surrounded a peripheral nerve 

for sensory stimulation. Repeated sensory perceptions similar 
in quality, magnitude, and localization were produced, along 
with precise and intuitive control of the osseointegrated pros­
thetic device, for more than one year. A total of eight different 
movements of the hand were controlled with an accuracy of 
more than 90%. All the tests were carried out with amputees 
while they were performing daily activity tasks.

More recently, a highly penetrating USEA interface was 
implanted for a month in two subjects having upper limb 
extremity amputations [89]. The subjects were able to control 
individual fingers of a virtual prosthetic hand. Two movement 
commands were decoded successfully online and 13 were 
decoded offline. This interface has the potential to access 
many neurons, and therefore in principle can selectively evoke 
more than eight sensory percepts of different hand locations 
and can control high degree-of-freedom prosthetic limbs.

Besides the above-mentioned studies, several notable 
experiments have been performed on methods of achieving 
sensory feedback. Stable and selective sensory perceptions 
without tingling or paresthesia were achieved for more than 
3 years in a chronic human experiment using an implanted 
extra-neural (FINE and cuff) interface [52, 53]. Consistent 
thresholds and impedances were recorded during the study 
period, which made use of distinct perceptual areas on the 
residual limb of an amputee. However, aspects related to pros­
thesis control were not evaluated in these long-term implant 
studies. This review has made attempts to circumvent infor­
mation related to sensory stimulation and its characteristics 
using peripheral nerve interface.

5.2.  Limitations in long-term use of state-of-the-art  
PNS acquisition techniques

Longevity, biocompatibility (tissue response), mechanical 
durability, and functional stability are essential aspects of 
neural interfaces [14, 105]. In an ideal case, useful record­
ings would be maintainable for many years from the periph­
eral nerve interfaces, and the measured activity from the nerve 
would provide stable signals over the life of the interface. A 
good interface should have the following features: (i) selective 
recording of the target neurons, (ii) specifically designed and 
fabricated for peripheral nerve; (iii) mechanically durable; (iv) 
able to communicate bidirectionally; (v) functionally stable in 
electrical terms; (vi) able to resist damage by foreign body 
reactions; and (vii) (the most important factor) capable of bio-
integration, i.e. biocompatible. Two types of biocompatibility 
come into play for implantable interfaces: passive and active 
[56]. Passive biocompatibility is related to the reaction of tis­
sues to the shape, composition, and mechanical properties of 
the interface materials, while active biocompatibility is related 
to the operating performance of the interface. Inflammation 
and tissue response (fibrosis) play a critical role in reducing 
the performance of the interface. The control of implantation 
site responses (inflammation) is crucial for long-term stabil­
ity of an implant [110]. This can help in maintaining neurons 
near the implanted interface. Inside the nerve, the more bio­
compatible the interface, the more the space between record­
ing interface and the neurons can be reduced, with neuronal 
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growth towards the interface. Management of inflammation 
can improve long-term stability, both from the device stand­
point and the neural-network standpoint. Several techniques 
to minimize interface-associated inflammation are described 
in the literature, including coating the interface with an adhe­
sive or conducting polymer, reducing stiffness, and the use of 
anti-inflammatory surfaces.

Various interfaces have been implanted in animals to check 
their biocompatibility and recording/stimulating capabilities 
[62, 68]. In a chronic study of cats, intra-neural interfaces 
(USEAs) were implanted for the period of 12 months [88]. 
The researchers examined the foreign body response to the 
implanted interface and its surrounding cuff. Increased num­
bers of activated microphages were observed at the implant­
ation site and distal to the implant. The results provided 
evidence of axons around the interface, and a compensatory 
regenerative response after the initial injury of the nerve was 
also observed.

More recently, the long-term viability of an implanted 
intra-neural interface (TIME) was demonstrated in rats [111]. 
The results showed that the stimulation thresholds and imped­
ance of the interface were increased moderately during the 
first month but remained stable for the rest of the study period 
(5 months), despite the presence of a foreign body reaction. 
Over time, fibrous tissues developed and surrounded the neu­
ral implant, resulting in an increase in the diameter of the 
nerve. In addition, it was found that the density of neurons 
or nerve fibers below and above the implanted site remained 
unaffected. It is worth noting that an interface stable for six 
months in rats may remain functional for years in humans, 
due to reduced foreign body reactions and impedance values, 
as reported in the literature.

The patchiness of information related to the interaction 
of neurons and interfaces has limited the use of intra-neural 
implants in clinical applications, although they have been 
used in several research studies on humans. None of the 
human studies went beyond the limit of four weeks, due to 
the penetrating nature of these interfaces. They did, however, 
show interactions with multiple neurons that could be selec­
tively recorded for use in controlling multiple functions of a 
prosthesis. In one human study, complete termination of the 
sensory signals was observed after 10 d of implantation due 
to foreign body reactions [65]. As mentioned in the previ­
ous section, these interfaces have been implanted in several 
studies that succeeded in getting useful motor signals, but 
the durations of the studies were very limited, from days to 
a month. This does not provide adequate information related 
to the stable and long-term use of penetrating-type interfaces. 
(In a different study, intramuscular and epimysial interfaces 
were implanted in human subjects and successfully used to 
provide upper-limb function for over 16 years [112], but these 
implants were not peripheral nerve interfaces.)

In comparison to the above-mentioned studies, a study 
was conducted in which extra-neural (spiral cuff) interfaces 
were implanted in 14 human subjects with spinal cord inju­
ries or upper limb amputation for a period of more than ten 
years [113]. The key outcomes examined were activation 
thresholds, muscle recruitment curves, and percent overlap 

of recruited motor unit populations. Stable thresholds were 
observed at several interface sites. After six years of implant­
ation, the muscle selectivity of two multi-contact spiral cuffs 
was still high.

The results of this study and some of the studies discussed 
in the preceding section [49–54] have shown the potential of 
extra-neural implants to be used clinically in human periph­
eral nerves for long periods of time in a stable and selective 
manner. However, the regular use of extra- or intra-neural 
implants for prosthetic control has yet to be achieved due to 
several issues, including the limited rate of information trans­
fer, limited stability of the acquired signals, limited biocom­
patibility of the interface, inability of the interface to provide 
sensory feedback, and lack of overall system robustness. 
Another important issue is that very few research groups have 
been working on implanted peripheral nerve interfaces and 
their application in humans. Along with this, the need for per­
mission from health administrative authorities can be a barrier 
to long-term implantation. Consequently, most of the decod­
ing studies have lasted less than a month, which is sufficient 
to demonstrate the usability of an interface but not its long-
term viability (although this has been demonstrated in animal 
studies). Moreover, the cooperation of the amputee is also 
an extremely important factor, because he or she has already 
experienced a traumatic event.

Many control signals must be recorded, transmitted, and 
processed in a short time to operate a multifunctional pros­
thesis. To address this need, several decoding algorithms have 
been implemented in the past to increase the responsiveness 
of a prosthesis and enhance its intuitive control. In the next 
section, we will review peripheral nerve signal decoding 
processes using the most recently developed algorithms and 
methods for feature extraction and classification.

6.  Peripheral nerve signal decoding processes

Two types of signals can be attained from peripheral nerves, 
population activity, and spike activity. As explained in the 
signal acquisition section, population activity signals can be 
recorded using extra-neural interfaces such as a cuff or FINE, 
which are placed around a nerve. In these cases, the recorded 
signals carry information about overall nerve activity rather 
than neuron-specific information. Spike activity signals, on 
the other hand, can be recorded using intra-neural interfaces 
such as LIFE or TIME and their variants, as well as MEAs. 
These interfaces are placed inside the nerve, either laterally or 
transversely. Hence, the recorded signals are action potentials 
(spikes) carrying the electrical information passing through 
individual nerve fibers (axons). The raw ENG signals have 
low amplitude and relatively high noise levels, and generally 
need to be denoised prior to further processing [114].

6.1.  Preprocessing

6.1.1.  Sources of noise.  Common sources of noise in ENG 
signals include EMG, transient artifacts, oscillatory or time-
varying noise, motor nerve signals in transected axons, and 
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other distortions [14]. These sources of noise are inherent; this 
fact necessitates the application of filters to raw signals before 
further processing.

6.1.2.  Filters.  Many different methods have been used to 
filter raw ENG signals. Some of the most popular are com­
mon average reference [115] for removal of EMG artifacts, 
thresholding for removal of transient low-amplification noise, 
band-pass filters for oscillatory noise, adaptive filters for time-
varying noise due to the inherent nature of nerve signals, and 
de-trending of signals for removal of baseline voltage shifts 
[116]. Deeper processing makes use of Bayesian spatial filters 
for source signal extraction algorithm [9] and a hybrid exten­
sion of this approach [117] that simultaneously maximizes 
the SNR of the source signal and minimizes cross-talk [118]. 
These methods can precisely separate peripheral neural sig­
nals, potentially providing the voluntary, nearly natural, robust 
command signals needed for advanced prosthetic limbs.

Wavelet denoising is a technique used in signal process­
ing for simultaneously manipulating both the time and fre­
quency components of a signal. It is used to remove noise 
as well as to detect features, for enhanced classification per­
formance. The signal is first transformed into an orthogonal 
time-frequency representation. Thresholding is applied to the 
transformed coefficients, and the signal is then converted back 
into the original domain, thereby yielding denoised data. For 
signals comprising spikes, modified wavelet-denoising [119] 
and classification [120] algorithms have been used for accu­
rate detection of action potentials from a nerve. Another study 
[114] used finite impulse response (FIR) bandpass filters to 
extract the required frequency band and to effectively remove 
all noise outside of it. A method based on the stationary 
wavelet transform for denoising spike signals and improving 
action potential detection has also been developed [121]. For 
each potential mother wavelet, the researchers thresholded 
the amplitude of the output signal to detect action potentials. 
Spikes were detected based on a threshold value obtained after 
inverse transformation. Finally, the wavelet corresponding to 
the highest root mean square of the average was selected as 
the optimal mother wavelet. Using a wavelet filter (wavelet 
multi-level decomposition and reconstruction) before detect­
ing spikes improved the SNR, preserved the shape of the 
waveform, and increased cluster discrimination [122].

For population activity signals, optimal filters (Wiener, 
Matched, and band pass filters) have been designed that 
improved the SNR by 137% for the Wiener, 211% for the 
Matched, and 203% for the band pass filter [123]. Assuming 
the noise to be Gaussian and the signal to be non-Gaussian, 
the researchers were able to extract, as action-potential peaks, 
signal amplitudes exceeding the value of the estimated noise 
amplitude. These analyses made it clear that the modality 
selectivity of ENG recordings can be increased using optimal 
filtering. These results can help in understanding how neural 
activity can be used as a control signal in neural prosthetic 
devices.

6.2.  Channel selection and reduction

Continuous multi-dimensional electrophysiological signals 
are of high density, and therefore computationally expensive. 
Processing them requires substantial computing power and 
fast algorithms, making systems costly and difficult to imple­
ment. Moreover, these signals sometimes have linear depen­
dencies, which can reduce their classification performance. 
Dimensionality reduction algorithms such as mutual informa­
tion-based or correlation-based channel selection, principal 
components analysis, or independent component analysis can 
be helpful in tackling this type of problem.

6.2.1.  Principal component analysis (PCA).  PCA is a statisti­
cal technique that uses variance to convert overlapping data 
into non-overlapping data via orthogonal transformation. This 
technique, which is very popular in neural-signal analysis, has 
been reported extensively in the literature [35, 85, 124–129]. 
PCA can transform a set of data with correlated values to a 
set of values that are linearly uncorrelated, called principal 
components. The highest-order principle components have 
the largest levels of variability; each subsequent principal 
component has lower variability. The PCA algorithm uses 
eigenvalue techniques for correlation calculation. For highly 
correlated data, the eigenvalues of the correlation matrix show 
a large disparity, implying a small number of meaningful prin­
cipal components (transformed signals). In such a case, the 
rest of the components can be ignored. After transformation, 
the resulting data set has lower dimensionality, which means 
reduced complexity and easier classifiability.

If Σ is the covariance matrix of the entire set of neural 
data x, with eigenvector matrix α and eigenvectors αk corre­
sponding to eigenvalues λk , the equation

max
(
var

[
αTx

])
= αT

1

∑
α1 = λ1,� (1)

can be used to find the largest eigenvalue λ1, which gives the 
first principle component. This process can be continued in a 
similar manner to find the subsequent principal components. 
Generally, the first four or five principal components are used 
in neural data analysis.

6.3.  Source extraction

Neural data obtained from population activity recordings 
may contain signals from both motor and sensory sources. 
To utilize the acquired signal effectively in a neural-signal-
controlled system, it is useful to determine its source. A 
beamforming algorithm has been developed that uses prior 
knowledge of the cuff interface geometry for source separa­
tion [130]. The advantage of this algorithm is that it does not 
assume signal independence, nor does it require an extensive 
knowledge of the nerve geometry. This algorithm requires two 
training stages. Afterwards, a realistic finite element model is 
used for validation of the resulting algorithm, based on a more 
realistic model of the nerve. For recordings from the human 
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femoral nerve, the algorithm was able to separate signals from 
sources as close together as 1.5 mm and with cross-correlation 
coefficients R  >  0.9.

Another source extraction algorithm has been developed 
and tested using cuff interface signals, called blind source sep­
aration [131]. This was used in recovering independent source 
signals from recordings (using FINE) of mixed signals. The 
recorded mixed signal is decomposed in the form

x (t) = As (t) + g (t) ,� (2)

where A is the mixing matrix, s(t) is the original source signal, 
and g(t) is the recorded noise. The estimated source signal c(t) 
is given by the equation

c (t) = Wx (t) ,� (3)

where W is an estimated demixing matrix obtained by opti­
mizing an objective function which implicitly measures 
the degree of mutual independence in the estimated source 
signals.

Using fast-independent component analysis, an objective 
function was developed as

J (x) ≈ k1(ε {G1 (x)})2
+ k2(ε {G2 (x)} − ε {G2 (v)})2,

� (4)

where G1(x) = (1/a1) log cosh(a1x), G2 (x) = −e−x2/2, v is  
a Gaussian random variable, and 1 � a1 � 2.

Correlation coefficients were calculated by quantifying 
the similarities between original fascicular sources and the 
estimated sources. The researchers were able to recover four 
independent fascicular sources from six simulated channel 
recordings with correlation coefficients R  >  0.95.

6.4.  Feature extraction

Raw action potential signals from the PNS are rarely used 
directly for decoding of movement intentions. Intra-neural 
interfaces record spikes that can be processed using spike 
sorting algorithms, but for population activity recorded using 
extra-neural interfaces, different types of features need to 
be extracted. Both scenarios are discussed in the following 
sections.

6.4.1.  Spike detection and sorting.  A typical active motor 
neuron generates 40–200 action potentials per second. Spikes 
are normally detected in recorded data using some form of 
thresholding, and may be further sorted based on the spike 

waveform. Because different types of axons can yield differ­
ent spike shapes, the shape of a spike can be helpful in deter­
mining which type of motor activity is associated with the 
recorded signal. For this purpose, spike-sorting algorithms are 
used. This is a very popular to decoding neural data from the 
PNS [10, 82, 85, 132–136]. The spike-sorted data can be used 
to decode neural information as well as to determine the onset 
of activity in a nerve unit.

The spike sorting process consists of two phases. First, the 
recorded spikes are grouped into clusters based on the similar­
ity of their shapes. Before the second step, noise removal is 
useful—a popular technique for noise removal in spike sort­
ing algorithms is wavelet denoising (WD) [119–122, 137], 
though the Butterworth band pass filter can also be used. After 
denoising, the spikes are aligned, typically with respect to the 
amplitude peaks. In the second step, templates for different 
spike shapes are generated, either directly or in the form of 
features, and then spikes with similar features are grouped 
into clusters that hopefully correspond to different neurons. 
The flow diagram for a typical spike sorting algorithm is 
shown in figure 3.

PCA and wavelet transforms are commonly used for dimen­
sionality reduction in spike sorting. PCA yields an efficient 
coding of spikes, as only the first two to three principal comp­
onents usually need to be retained (for mathematical details 
on PCA, see section 6.2.1). However, it may require offline 
training along with high computational cost and hardware 
resources, with no guarantee of optimal separation of clus­
ters. The wavelet transform (WT) is a multi-resolution algo­
rithm that provides good time resolution at high frequencies 
and good frequency resolution at low frequencies. However, 
the convolution of the wavelet function with the original sig­
nal requires multiple multiplications and additions per spike, 
resulting in a high computational cost.

Spike detection is done by comparing the denoised signal 
to a detection threshold and extracting a time window around 
each peak that rises above the threshold. In one study [114], 
the detection threshold was chosen to be three times the stand­
ard deviation of the samples in each window. However, this 
method is sensitive to non-Gaussian noise. Another study 
[120] has proposed a more robust threshold selection process 
based on the nonlinear energy operator (NEO):

η{x̂[k]} = x̂2[k]− x̂[k + 1] · x̂[k − 1].� (5)

The threshold is chosen as a scaled version (scaled by an 
empirically chosen variable C) of the mean value of NEO.

Figure 3.  Flowchart of a general spike sorting algorithm.
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Thr = C
1
N

N∑
k=1

η {x̂ [k]}.� (6)

After extraction, the spikes are sorted and labeled according 
to their shape and size.

A spike sorting algorithm based on PCA and subtractive 
clustering has been developed [138]. Spike templates (i.e. 
waveforms) were created according to the clustering results 
for recordings from a microelectrode array. A template-
matching procedure was used in which the minimum residual 
variance was computed by comparing each spike event with 
time-shifted versions of each template. If the residual variance 
passed a Chi-squared test, the spike was labeled as matching 
the best-fitting template. The formula used was

(W − 1) v2

σ2 ∼ χ2 (W − 1) ,� (7)

where W is the length of the waveform sample, v is the vari­
ance of the residue (the difference between the spike waveform 
and the time-shifted template), and σ is the variance of the non-
spiking period. This method was able to reduce the problem of 
overfitting as well as decreasing the computational cost.

Another algorithm, convolutive independent component 
analysis, was developed for unsupervised spike sorting from 
recordings made with high density microelectrodes. Bayesian 
model estimation was utilized by this method to assess the 
spatiotemporal structure of the data and avoid overfitting. 
Reduced spike overlaps were achieved along with increased 
SNR. A continuous-wavelet-transform-based spike-detection 
algorithm was developed that used the correlation between 
wavelet coefficients at different sampling scales to create a 
robust spike detector [139]. Another similar algorithm was 
proposed and tested for spike sorting and detection on data 
recorded from in vitro 2D neural networks. This method was 
based on wavelet packet decomposition [140].

Feature extraction is often carried out on recordings to 
improve classification. Some of the most commonly used 
features in spike sorting are as follows: PCA coefficients, 
wavelet transform (localizes distinctive spike features, with 
superparamagnetic clustering) [141], first and second deriva­
tive extrema and geometric features [82], spike rates of each 
waveform [114], spike height and width or peak-to-peak 
amplitude [142], kurtosis [143], correlation coefficients, mean 
squared difference values, power or energy of a spike [64], 
repolarization slope [144], and geometric shape of the spike 
waveform [145].

6.4.2.  Feature extraction for population-activity signal.  Char­
acteristic features can also be generated for population activ­
ity signals, to increase the classifiability of the data as well as 
reduce dimensionality, thus making data analysis less compu­
tationally expensive. A common type of feature used in decod­
ing behavior from population signals is the power in discrete 
frequency bands. Several types of features can be extracted 
from an ENG signal, including time-based [41] and phase-
based features [146]. During feature extraction, to enhance 
the information in the ENG signal, the time-series is divided 

into optimal length samples referred to as the running obser­
vation window (ROW). The features are extracted within this 
window, thereby preserving the temporal characteristics of the 
data. To avoid mishandling data at the boundaries, the windows 
are overlapped by a certain percentage. The size of the ROWs 
and percentage of overlap play an important role in determin­
ing classification performance and are generally dependent 
on the paradigm and the features being extracted. In experi­
ments using an extra-neural interface placed around the sciatic 
nerve of anesthetized rats, different ROWs were tested, rang­
ing from 25 to 300 ms, with overlap ranging from 25% to 75%. 
Various features were tested, including mean absolute values, 
variance unbiased estimator, wavelength [97], wavelet denois­
ing, energy band on discrete Fourier transform, autoregression 
coefficients [147], Cepstral coefficients [148], and autocorrela­
tion-based features [149]. Mathematical descriptions of some 
features used extensively in the literature are shown in table 1.

6.5.  Classification technique

Classification techniques are used to categorize the nerve sig­
nals generated by a prosthesis user. These categorized signals 
are then translated into control commands for application inter­
face purposes. Both the sorted spikes and population-activity 
features are passed to classification algorithms for determina­
tion of user intent. A wide variety of algorithms have been 
tested for ENG and EMG signals, including support vector 
machines (SVM) [41, 63, 64], artificial neural networks [65], 
Kalman filters [89], genetic algorithms [150], and Bayesian 
methods. Clustering is also a very popular machine learning 
method used for neural signals; various methods including 
K-means, fuzzy-C means, and density-based clustering [82] 
have been applied. Some of the classification techniques used 
in the past are discussed below.

6.5.1.  Support vector machines.  SVM is a very popular pat­
tern recognition technique for biomedical signals and has 
been used in several studies [8, 114]. This technique can settle 
on a global minimum error after training. In addition, it is 
repeatable and fast, thus popular for use in on-chip systems. 
It is a supervised binary classifier [151] that determines the 
‘maximum margin hyperplane’, a hyperplane that gives the 
maximum class separation. The algorithm does this by map­
ping the input data into a feature space that can be divided 
using linear or non-linear decision boundaries, depending on 
its kernel functions (Gaussian or radial basis functions) [24]. 
For a multi-class problem, the data are subdivided into mul­
tiple two-class problems and a one-against-one approach is 
used [152]. For an n-class classification problem, n(n − 1)/2 
machines can be trained. The open source library LIBSVM 
[153] is extensively used for applications of SVM.

6.5.2.  Kalman filter-based decoding.  Neural signals 
obtained from a population of neurons such as those acquired 
by epi-neural interfaces or MEAs contain information that 
can be used to generate movement estimates. These estimates 
can vary continuously over a range of possible movements, 
such as arm or hand movements, including grip patterns [84]. 
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Continuous decoding methods such as Kalman filtering (KF) 
can be used to decode and reconstruct the intended movement. 
Hand movement patterns have been decoded using KF [89]. 
According to the researchers who did this, as a first approx­
imation a linear relationship between hand kinematics and the 
neural data was assumed in the algorithm.

The linear temporal relation between hand movements x
can be given by [14]

xk+1 = Axk + wk,� (8)

where A is the predictor matrix for the state variable, and w is 
the prediction error vector. Similarly, the relation between the 
hand kinematics and the neural signal z can be represented as

zk = Hxk + qk,� (9)

where H is the coefficient matrix and q is the modeling error 
vector. The vectors w and q are assumed to be Gaussian, with 
zero mean and orthogonal covariance matrix. The Kalman 
decoder estimates the movement vector xk at time tk , given the 
observation vector zk  and knowledge of the matrices A and H.

6.5.3.  Clustering.  Clustering techniques organize unlabeled 
data into groups to maximize within-class similarities and 
minimize between-class similarities. An ideal clustering algo­
rithm for online analysis should be automatic, non-parametric 
and able to classify without a priori knowledge.

6.5.3.1.  K-means clustering.  Spikes are assigned to clusters 
based on the minimum Euclidean distance between the data 
points and the centroid of the cluster [140]. The main benefit 
of this method in spike sorting is that the algorithm is very 
simple and fast [127].

6.5.3.2.  Fuzzy C-means clustering.  Spikes are assigned to all 
clusters according to their degree of membership, depending 

on the Euclidean distance from the cluster centroid and the 
degree of fuzziness [154]. In the ‘defuzzification’ step, a spike 
is classified according to its maximum membership value.

6.5.3.3. Density-based clustering.  In the training phase, a 
density distribution is calculated from the feature space. Each 
detected spike results in an increase in the density of its corre­
sponding and surrounding feature cells. After computing the 
density distribution of the training spikes, labels are given to 
the cells according to a local density maximum. Finally, the 
entire density map is separated in an unsupervised way into 
several clusters corresponding to the local density peaks.

6.5.3.4. Bayesian clustering.  In Bayesian clustering, each 
cluster is modeled with a multivariate Gaussian centered on 
the cluster. Classification is performed by calculating the 
probability p of a data point belonging to a cluster:

p (ck|x, θ1:k) =
p (x|ck, θk) p (ck)∑
k p (x|ck, θk) p (ck)

,� (10)

where θ1:k = {µ1, Σ1, ...., µk, Σk}, µk  is the mean, Σk is the 
covariance matrix for class ck, and p(ck) corresponds to the 
relative firing frequencies.

6.5.3.5. O-sort clustering.  O-sort clustering [126] is an online, 
automatic, and unsupervised algorithm. It starts by assigning 
the first data point to a cluster of its own. After that, the dis­
tance between the next data point and each cluster centroid is 
computed. A threshold value called the merging threshold is 
set based on the standard deviation. If the smallest distance is 
less than the merging threshold, the data point is assigned to 
the nearest cluster; otherwise it is used to start a new cluster. 
The mean of the updated clusters is recalculated at every step, 
and the process is repeated as many times as required. This 

Table 1.  Overview of features extracted from literature on peripheral nerve signals.

Feature Description Definition

Mean absolute value [41] Measures mean absolute value of a signal in fixed sized 
windows

X̄ = 1
N

N∑
k=1

|xk|

Variance [41] Determines the (squared) deviation of the data from the 
mean value

σ2 = 1
N

N∑
k=1

(xk − µ)
2

Willison amplitude (WAMP) [97] Counts number of times the signal crosses a set threshold 
value

WAMP =
N∑

k=1
f (|xk − xk+1|)

Autoregressive features [41] Accounts for the stochastic nature of nerve signals xi =
N∑

k=1
akxi−k

Extrema sampling of discrete 
derivatives [10]

Calculate the slope of data points and extract the min and 
max values

DDt (i) = x (i)− x (i − t)

Haar based wavelet transform [141] Time-frequency representation of the signal WψX (a, b) = 〈x (t) |ψa,b (t)〉

ψ a,b (t) = |a|−
1
2 ψ

( t−b
a

)
Geometric features [127] Calculates the positive and negative signal energy Es =

´∞
−∞ s2 (t)dt

Wavelet coefficients [127] Decomposes the signals into mutually orthogonal set of 
wavelets at different scales given by ‘a’

1√
|a|

´∞
−∞ ψ

( u−t
a

)
f (u) d (u)

Repolarization slope (RPS) [144] Determines the magnitude of the slope of the spike in the 
region in which it falls most rapidly, called repolarization

r = max
n

{ ∞∑
−∞

x [n + m] p [m]

}

NEO Coefficients [120] Calculates the energy content of the signal at time n. ψ (x [n]) = x2 [n]− x [n − 1] .x [n + 1]
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algorithm is adaptive, hence non-stationarity of data in time 
can cause movement of the clusters and changes in the num­
ber of clusters. A weakness of this method is that it may split 
clusters into spurious subclusters, leading to a reduction in 
clustering performance.

7.  Performance evaluation and validation

The feasibility and effectiveness of the chosen features and 
classification algorithm can be determined by setting up per­
formance evaluation criteria, such as the percentage of correct 
classifications. This helps in quantifying the success of the 
developed system. The performance evaluation criterion used 
in one study for the classification accuracy of spike sorting 
techniques was [10]:

Classification accuracy =
True postive

Total number of detected spikes
× 100%.�

(11)
Another study calculated a confusion matrix to identify sub­
sets of classes for checking misclassification in the system 
they developed [114]. The overall percentage of correct clas­
sifications (PC) was calculated as the ratio of the number of 
trials whose stimulus type was correctly identified to the total 
number of trails classified. A validation scheme was also set 
up in that study to ensure that test and training data remain 
free of bias.

In another evaluation scheme, the results of spike sorting 
are assessed based on a priori knowledge of the input [124]. 
Two measures were used; (i) the ratio of the number of clus­
ters output by the spike sorting procedure to the actual number 
of clusters, (ii) the number of false positive and false nega­
tive spikes for each cluster versus the number of spikes that 
should have been assigned to each cluster. The general cluster 
percentage error was defined as

Cluster error(ne) =
Fn(ne) + Fp(ne)∑e
ne=1 S(ne) + SNOISE

× 100%,� (12)

where ne is a member of a set of expected clusters (ne  =  1,…., e),  
Fn(ne) and Fp(ne) are the numbers of false negative and false 
positive spikes respectively, S (ne) is the number of spikes 
truly belonging to each cluster, and SNOISE is the expected 
number of overlapping spikes.

In another study [82], the rate of classification accuracy 
was defined as the ratio of the number of correctly classified 
spikes to the total number of input spikes. Cluster validity 
(CV), the ratio of between-cluster to within-cluster distance, 
was used as an index of performance, along with intra-cluster 
variance (ICV), to determine the probability of misclassifica­
tion in each cluster. The formulas used were

CV =

min
i=1..K, j=1..K

‖CCi − CCj‖2

∑K
i=1

∑
A∈Ni

‖A−CCi‖2

N

,� (13)

where CCi and CCj are the centers of clusters i and j respec­
tively, N  is the total number of spikes, K  is the number of neu­
rons simulated in the recording, and A is the feature vector; and

ICVi =
1
Ni

Ni∑
j=1

‖vj − µi‖2,� (14)

where vj is the jth spike in the ith cluster, µi is its mean tem­
plate and Ni is the number of spikes in cluster i.

8.  Online systems for decoding of peripheral  
nerve signals

The most obvious application of a nerve-controlled inter­
face system is prosthetic devices used as replacements for 
an upper limb. The system would translate nerve signals 
into useful motor commands for driving the prostheses. For 
optimal naturalness and practicality, the developed system 
must be online, real-time, and autonomous [126, 155]. This 
requires that the algorithms developed are computationally 
inexpensive, robust, and suitable for hardware implementa­
tion. Correspondingly, the hardware should be compact and 
power-efficient. To enable naturalistic prosthetic control, data 
must be continuously streamed from the implanted device in 
real time and with minimal latency. One method of doing this 
is to apply feature extraction to limit the amount of data that 
needs to be transmitted [156]. For example, from the detected 
neuronal spikes, only the active portion of data may be trans­
mitted, which may lead to an order of magnitude reduction 
of the required (useful) data rate. Another simple, power-
efficient method for reducing the data rate while preserving 
spike timing information has also been used [157]: spike 
detection was performed by detecting threshold crossings 
with a comparator and a user-programmable threshold volt­
age, and the comparators were reset roughly once per mil­
lisecond, which provides sufficient temporal resolution and 
results in a total data rate of 100 kb s−1 for all channels. To 
solving the problem of circuit wiring, the electronic module 
was surface-mounted directly onto the electrode’s flat sub­
strate [158].

8.1.  Amplification

Development of a low-noise, low-power amplifier is impor­
tant for hardware realization. It must be capable of amplifying 
neural signals in the range of 500–5000 Hz while rejecting 
large direct current (DC) offsets generated at the intersection 
of tissue with the implanted interface. An 8 μW fully inte­
grated CMOS biological amplifier was developed for this 
purpose [159]. Using this system, the researchers were able 
to achieve an ultralow-frequency response while completely 
rejecting large DC offsets. A programmable amplification 
component was added to exploit the full dynamic range of the 
device in an in vivo experiment using an intra-neural interface 
[160]. Recently, a compact, low powered, current mode neu­
ral spike detector was developed for neural recording appli­
cations based on an approximation of the non-linear energy 
operator [161].
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8.2.  Algorithm optimization for hardware implementation

For implementation of neural decoding algorithms in embed­
ded systems for online applications, the algorithms must be 
optimized for real-time operation and low power consump­
tion. For example, Zamani and Demosthenous [10] devel­
oped a simplified model of the discrete wavelet transform in 
which they computed discrete derivatives by calculating the 
slope at each sample point over a number of different time 
scales. O-sort clustering was employed, as it provides real-
time mapping of spikes to single-neuron activity and was able 
to reduce the data rate to about 0.2% of the original data rate, 
thus reducing computational complexity. In fact, a very low 
data rate is especially advantageous in a high-channel-count-
recording micro-system [162].

Wavelet denoising and spike detection, as well as a clas­
sification algorithm, were optimized in a study of real-time 
decoding of neural signals [120]. The neuro-prosthetic appli­
cation in that study was developed on a DSP platform. The 
researchers used a binary trigger to label the data during train­
ing, along with a use of soft-margin version of SVM for easier 
optimization, thereby reducing the computational cost.

9.  Discussion and future work

Neuroprosthetics holds great promise for restoration of 
function and sensation to people who have lost limbs. 
Improvements in robustness, longevity, and effectiveness will 
lead to the development of more intuitive and natural devices 
capable of meeting the day-to-day requirements of people 
with amputations. Although upper-limb prosthetic technol­
ogy has existed for several decades, it is only recently, with 
advancements in microelectronics and other technologi­
cal and scientific developments, that it has become possible 
to realize true neuro-prostheses. With the development of 
diverse types of interfaces, researchers now have a variety 
of ways of acquiring peripheral nerve signals, which can be 
adapted to individual patient requirements. However, there 
are several points of concern that have yet to be addressed, 
including the need for an implanted interface for recording 
and stimulation to have the following properties: (i) biocom­
patibility or bio-integrability; (ii) long-term stability, selectiv­
ity and reliability of the interface and the signals it produces; 
(iii) ability to communicate bidirectionally; (iv) manageable 
cost and complexity; (v) sense of embodiment for the user; 
(vi) ability to provide near-natural feelings, phantom pain 
relief, and improved psychological well-being for an amputee. 
Providing sensory feedback using peripheral nerve stimula­
tion is a critical requirement of prosthesis users. The practical 
complications and shortcomings of interfaces are both biolog­
ical and biophysical. These challenges include: nerve injury 
during interface implantation; stability issues in the interface 
over time due to inflammation; reliability of the interface in 
terms of functional resolution; relatively weak, noisy electri­
cal signals causing incorrect interpretation of neural signals; 
implantation-associated injury to nerve axons; and long-term 
biocompatibility of interfaces.

Although many useful results have been obtained (as 
explained especially in section 5), challenges still lie ahead. 
First, several sensory information (tactile feedback) should 
be used for better control of prostheses. This feedback can 
be generated using sophisticated stimulation methods that 
are able to fully exploit the potential of neural interfaces. For 
example, Tyler and colleagues [53] have shown that several 
sensations can be evoked using patterned complex electrical 
stimulations that activate afferent neurons in a more natural 
way than simple electrical impulses. Micera and colleagues 
[163] also have demonstrated the ability of subjects to dis­
criminate sophisticated textural features using intra-neural 
stimulation. Despite these advances, over the next few years 
the main challenge will be to achieve long-term stable implants 
for large-scale clinical applications. Several approaches have 
long been studied, based on which the primary goal is to fabri­
cate an interface that is stable and biocompatible and that can 
selectively record signals from the peripheral nerve to drive a 
prosthesis. To achieve this, it will be essential to develop new 
implant materials that provide more intimate and more natural 
interfaces with the peripheral nervous system, and to perform 
long-term tests of their biocompatibility and stability.

For the current state of the art in neural interfaces, it is 
difficult to judge longevity, because most of the clinical tri­
als have lasted less than a month, due largely to constraints 
imposed by regulatory authorities. In addition, it can be dif­
ficult to convince an amputee who has already experienced 
a traumatic event to undergo surgery and a long period of 
interface implantation. Moreover, breakage of the interface 
within or outside of the nerve is also one of the problems 
that need to be solved for long-term implants. A recent study 
by Wurth and colleagues [111] demonstrated the selectiv­
ity, stability, longevity, and biocompatibility of intra-neural 
type interfaces on animals. Stable detection of movement 
intent was also demonstrated in another study on animals by 
Durand and colleagues [151] using an extra-neural (FINE) 
interface. It will be interesting to see the results of implant­
ation of these interfaces in humans for longer periods. 
However, evidence has been published for long-term stability 
of peripheral nerve stimulation for sensory feedback using 
extra-neural interfaces [53, 113]. To be considered a suc­
cessful long-term interface, a control system must satisfy the 
following conditions: (i) simultaneous proportional control 
of multiple prosthesis functions with intuitive generation of 
near-natural movements; (ii) robust enough to handle signal 
deviations with continuous usage and variations in limb posi­
tion; (iii) can be executed with lowest number of interfaces; 
(iv) supports a feedback mechanism other than vision; (v) 
perceived by amputees as part of their body; (vi) able to avoid 
incorrect classification and undesirable movements; and (vii) 
the most important, real-time function. With the rapid pace 
of advances in machine learning and the steadily increasing 
computational power of embedded systems, processing phys­
iological signals in real time is much more feasible than it 
was in the past. However, achieving directly nerve-controlled 
interfaces still requires significant additional research and tri­
als before marketable systems can be designed and built [17].
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10.  Conclusions

Peripheral nerves provide access to highly processed and seg­
regated neural command signals from the brain for the control 
of skeletal muscles, but the relevant interface technologies are 
still rather primitive. These primitive interfaces have already 
been fruitfully used to record motor commands and evoke 
informative sensations. More sophisticated interfaces could 
in principle provide lifelike, intuitive control of prosthetic 
limbs with multiple degrees of freedom. Existing interfaces 
can be improved by making them more biocompatible and 
more compliant, thus less damaging to the axons, fascicles, 
and other parts of a nerve. This paper provides a detailed 
analysis of the existing interface technologies, the state of the 
art in decoding, their limitations, and the methods that have 
been developed and applied by researchers to neuroprosthet­
ics, from acquisition of the signal to control of the prosthesis. 
Depending on the type and site of amputation, researchers can 
choose the most suitable interface for acquisition of either 
spike signals or population activity signals. Such signals 
require machine-learning techniques for decoding, including 
feature extraction in running time windows and classification 
to determine appropriate motor commands. This paper addi­
tionally discussed the various on-chip deployments of decod­
ing schemes that have been used, including their development 
and the optimization of algorithms that can make them com­
putationally efficient for use in real-time systems.
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